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Goals and motivation for this XP 

  Focus on SOL / divertor transport and plasma-material 
interaction 
•  LLD pumping capability 
- Compare to LITER results from FY2008-2009 
- How does pumping and recycling depend on  

-  Divertor ion flux (core ion density) 
-  LLD temperature (cold, warm, warmer) 

•  SOL heat and particle transport regimes 
-  Document SOL collisionality change 
-  Parallel and radial electron and ion transport 
-  Impurity sources and transport 

•  Divertor heat flux handling 
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This XP would extend the LLD commissioning XP 
results to a wider operating / physics space 

  Extend the LLD commissioning XP results as follows: 
•  Use SGI and LFS gas if necessary to obtain a range of core ion 

densities 
-  As a result, obtain a proportional range of ion fluxes to divertor plate 
-  Can probably support nd ~ 1-6 x 1019 m-3 in  steady-state 

•  Use a range of LLD temperatures between 150 and 300 C 
-  LLD commiss. XP should provide understanding on LLD higher 

temp. limitation 
-  Lithium erosion changes by factor of ~3 between 215 and 300 C 
-  Lithium evaporation changes between 215 and 300 C 
-  Deuterium diffusion, solubility and LiD decomposition rate change 

•  Use high to medium triangularity shapes (ROSP ~ 0.4 – 0.65 m) 
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Aim at accurate measurements of particle 
balance, ion and impurity sources, pumping 

  LLD pumping capability 
•  Use particle balance models for “wall” inventory and τp

* 
essentially characterizing pumping 
-  From simple 0D models to sophisticated 0D models (e.g., A. 

Pigarov’s particle balance model) 
•  Measure SOL density response to singular flat-top SGI pulses 

(“pumpout”) 
-  Use FireTip channel 7 if operational 
-  Use divertor probes and D emission spectroscopy 

•  Use D emission spectroscopy and probes to measure local 
recycling coefficients 
-  Characterise ionization source and recycling coefficients across 

lower divertor, in upper divertor, on center stack 
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Study SOL parallel and radial transport regimes 

  Effect on SOL / divertor transport 
•  Measure impurity source profiles 

-  Use divertor cameras for Li I, Li II, C II profiles, S/XB factors from 
ADAS for impurity flux measurements 

-  Multi-channel spectroscopy for molecular emission in lower 
divertor - e.g., Fulcher bands for D2 fluxes, other bands for lithium 
and carbon radicals and dimers (e.g., McLean’s proposal) 

•  What can we say about parallel heat transport? 
-  Te gradients, Ti gradients 
-  Conductive vs convective 

•  What can we say about radial ion and impurity transport? 
-  Use GPI to characterize blob velocity and size 
-  Use UEDGE for impurity transport modeling 
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Backup 
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Erosion and evaporation rate of liquid lithium 
(courtesy of R. Doerner, A. Hassanein) 
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Summary of my APS poster “Modifications in SOL and 
divertor conditions with lithium coatings…” 

  Evaporative lithium coatings on carbon PFCs modify divertor and SOL 
sources 
•  Lower divertor, upper divertor and inner wall recycling was reduced by up to 50 % 
•  Local recycling coefficients reduced on inner wall and far SOL, remained similar in 

the outer strike point region 
•  Lower divertor carbon source from physical sputtering also reduced 
•  Divertor lithium influx increased, however, lithium was retained in divertor 

  SOL transport regime changes from high-recycling to sheath-limited 
•  Apparently small parallel Te gradient 
•  Detached inner divertor re-attaches, X-point MARFEs disappear 

  Pedestal and core confinement improvement leads to 
•  Reduction of ion inventory (density) by up to 50 % due to surface pumping  
•  Effective screening of lithium from core plasma 
•  Carbon and high-Z impurity accumulation 
•  Prad increases in the core, PSOL significantly reduces  
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Comparison with cryo-pumps 

  Cryo-pumping (e.g., DIII-D experience) 
•  Significant in-vessel hardware modifications 
•  Inflexibility in plasma shaping due to the need of proximity to 

strike point 
•  Calibrated pumping rate 
•  Demonstrated density control 
•  Compatibility with radiative divertor 

  Lithium coatings on graphite PFCs (NSTX LITER experience) 
•  Flexibility in plasma shaping 
•  Need for operational scenario development for each pumping 

and fueling rate 
•  Multiple side effects (good and bad) on plasma core and edge 
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Ion inventory is well controlled in discharges with lithium, 
core carbon accumulates, lithium is screened out 

  ion 

•  Impurity density profiles from CHERS 
–  C VI, n = 8-7 transition, 529.1 nm 
–  Li III, n = 7-5 transition, 516.7 nm   

•  Lithium concentration much lower than carbon concentration   
–  nC/nLi ~ 100 

•  Carbon increases with Li evaporation 

No lithium 
(129013) 
190 mg Lithium 
(129061) 
600 mg lithium 
(129064) 
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Dynamic particle balance model indicates strong 
pumping by lithium 

€ 

dN p

dt
= Γgas+ ΓNBI + ΓNBI _ cold + ΓNBI _ cryo + Γwall + Γpump +

dNn

dt

 Ion density    ni = ne
Z − Zeff
Z −1

 Fueling efficiency 

 Rewrite global particle balance equation as:    

€ 

η =
N p (t)
Nsrc(t)

Change of 
particle  
inventory 

Gas feed 
rate 

NBI fueling 
rate 

NBI cryopump 
rate 

Wall fueling 
or pumping 
rate 

TM pump 
rate 

Neutral gas 
buildup rate 

€ 

dN p

dt
= ηgasSgas +ηNBISNBI + Srecy −

N p

τ p

No lithium 
(129013) 
190 mg Lithium 
(129061) 
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A long pulse H-mode discharge scenario with 
SGI fueling and controlled Ni was developed  

  Used SGI-only fueling 
  LITER rate 6-9 mg/min 
  Ion density control 
  Ni constant, while Ne is rising due 

to carbon 
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